счетчик посещений

Какая она на самом деле, звезда?

Древние считали что звезды – нечто вечное и постоянные, хотя и наблюдали за некоторыми изменение их светимости. На сегодняшний день уже достоверно известно, что не все звезды одинаковы. Более того они тоже эволюционируют. Их жизнь можно сравнить с жизнью человека. И всегда все начинается с рождения и заканчивается смертью. Но смерть звезды это нечто другое – после смерти она дает энергию и материал для рождения новых звезд. Так что еще раз можно убедиться в справедливости выражения: «Ничто не вечно…»
Чтобы лучше изучить строение ученым понадобилось очень много времени. Как говорилось в одной из статей: наша система находится в относительно спокойной части галактики. А ближайшей к нам звездой, за которой можно было так или иначе наблюдать, было Солнце. Но даже сейчас можно только с определенной точностью говорить о внутреннем строении звезд.

Для анализа развития звезды очень важно знать ее внутреннюю структуру. Фактически, зная состав можно предположить как будут со временем изменятся внешние параметры такого небесного тела. К внешним параметрам можно отнести, конечно же, размер, массу и светимость.

Давайте попробуем выяснить, какие же процессы протекают в глубинах звездной массы.

Теперь на помощь астрономам приходят химики и физики. Внутреннее строение – это химический состав, смесь газов, которые образуют ту или иную звезду. Но даже такой простой вопрос может вызвать множество вариантов ответов. Ведь мы можем наблюдать только внешние слои звезд, которые принято называть атмосферой. Внутреннее строение нам недоступно – ни увидеть, ни проникнуть в глубь звезды мы, увы, не можем. Прежде всего, нам препятствует температура, даже известные фантасты не предлагали человечеству такой материал, чтобы он мог выдержать столь значительный нагрев, а тем более защитить от него человека.

Приходится применять не прямые методы изучения: компьютерное моделирование, лабораторные условия, математические расчеты, физико-химическое моделирование. А знать нам нужно не так уж много – температуру, плотность, давление и химический состав звезды.

Как же поступают современные ученые? Это очень просто – применяются известные законы физики и механики для определения необходимых параметров по данным, полученным об атмосферах звезд. И ко всему, считается, что звезды состоят из таких же химических элементов, которые встречаются на Земле. И вот нам и пригодятся все знания в области химии для моделирования процессов, происходящих в недрах звезд. Лабораторные условия исследования, конечно, далеко не соответствуют реальным, но так можно узнать очень многое. Элементарные частицы одинаковы во всей вселенной – протоны, электроны и нейтроны – их свойства должны быть одинаковы, хотя не исключено, что могут встречаться и аномалии.

Наблюдения показывают, что большинство звёзд устойчивы, т. е. они заметно не расширяются и не сжимаются в течение длительных промежутков времени. Как устойчивое тело звезда может существовать только в том случае, если все действующие на её вещество внутренние силы уравновешиваются. Какие же это силы?

Звезда – раскалённый газовый шар, а основным свойством газа является стремление расшириться и занять любой предоставленный ему объём. Это стремление вызвано давлением газа и определяется его температурой и плотностью. В каждой точке внутри звезды действует сила давления газа, которая старается расширить звезду. Но в каждой же точке ей противодействует другая сила – сила тяжести вышележащих слоев, пытающаяся сжать звезду. Однако ни расширения, ни сжатия не происходит, звезда устойчива. Это означает, что обе силы уравновешивают друг друга. А так как с глубиной вес вышележащих слоёв увеличивается, то давление, а, следовательно, и температура возрастают к центру звезды.

Звезда излучает энергию, вырабатываемую в её недрах. Температура в звезде распределена так, что в любом слое в каждый момент времени энергия, получаемая от нижележащего слоя, равняется энергии, отдаваемой слою вышележащему. Сколько энергии образуется в центре звезды, столько же должно излучаться её поверхностью, иначе равновесие нарушится. Таким образом, к давлению газа добавляется ещё и давление излучения.

Лучи, испускаемые звездой, получают свою энергию в недрах, где располагается её источник, и продвигаются через всю толщу звезды наружу, оказывая давление на внешние слои. Если бы звёздное вещество было прозрачным, то продвижение это осуществлялось бы почти мгновенно, со скоростью света. Но оно непрозрачно и тормозит прохождение излучения. Световые лучи поглощаются атомами и вновь испускаются уже в других направлениях. Путь каждого луча сложен и напоминает запутанную зигзагообразную кривую. Иногда он «блуждает» многие тысячи лет, прежде чем выйдет на поверхность и покинет звезду.

Излучение, покидающее поверхность звезды, качественно (но не количественно) отличается от излучения, рождающегося в источнике звёздной энергии. По мере движения наружу длина волны света увеличивается. Поверхность Солнца, например, излучает в основном световые и инфракрасные лучи, а в его недрах возникает коротковолновое рентгеновское и гамма-излучение. Давление излучения для Солнца и подобных ему звёзд составляет лишь очень малую долю от давления газа, но для гигантских звёзд оно значительно.

Оценки температуры и плотности в недрах звёзд получают теоретическим путём, исходя из известной массы звезды и мощности её излучения, на основании газовых законов физики и закона всемирного тяготения. Определённые таким образом температуры в центральных областях звёзд составляют от 10 млн. градусов для звёзд легче Солнца до 30 млн. градусов для гигантских звёзд. Температура в центре Солнца — около 15 млн. градусов.

 

 
 При таких температурах вещество в звёздных недрах почти полностью ионизовано. Атомы химических элементов теряют свои электронные оболочки. Вещество состоит только из атомных ядер и отдельных электронов. Поскольку поперечник атомного ядра в десятки тысяч раз меньше поперечника целого атома, то в объёме, вмещающем всего десяток целых атомов, могут свободно уместиться многие миллиарды атомных ядер и отдельных электронов. При этом расстояния между частицами вопреки высокой плотности будут всё ещё велики по сравнению с их размерами. Вот почему вещество, плотность которого в центре Солнца в 100 раз превышает плотность воды, – более плотное, чем любое твёрдое тело на Земле! — тем не менее, обладает всеми свойствами идеального газа.

Температура внутри звезды тем ниже, чем больше концентрация частиц в газе, т. е. чем меньше его средняя молекулярная масса. Средняя молекулярная масса газа, состоящего из атомов водорода, равна 1, из атомов гелия – 4, натрия – 23, железа – 56. В ионизованном газе число частиц увеличивается за счёт электронов, а общая масса вещества сохраняется неизменной. Поэтому молекулярная масса ионизованного водорода будет 1/2 (две частицы: протон и электрон), ионизованного гелия – 4/3, натрия – 23/12 = 1,92, железа – 56/27 = 2,07. Таким образом, в звёздном веществе все химические элементы, за исключением водорода и гелия, имеют среднюю молекулярную массу, равную примерно 2.

Чем больше водорода и гелия по сравнению с более тяжёлыми элементами, тем ниже температура в центре звезды. Чисто водородное Солнце, например, имело бы температуру в центре 10 млн. градусов, гелиевое 26 млн. градусов, а состоящее целиком из более тяжёлых элементов – 40 млн. градусов.

Чтобы получить представление о структуре звезды, пользуются методом последовательных приближений. Задавая некоторое соотношение водорода, гелия и более тяжёлых элементов и зная массу звезды, вычисляют её светимость. Эту процедуру повторяют до тех пор, пока для определённой смеси вычисленная и полученная из наблюдений светимости не совпадут. Данный состав и считается близким к реальному. Оказалось, что для большинства звёзд на долю водорода и гелия приходится не менее 98% массы.

Определение химического состава и физических условий в центральных частях звёзд позволило решить вопрос об источниках звёздной энергии. При температуре 10-30 млн. градусов и наличии большого числа ядер водорода протекают термоядерные реакции, в результате образуются ядра различных химических элементов. Не все возможные ядерные реакции годятся на роль источников звёздной энергии, а только такие, которые выделяют достаточно большую энергию и могут продолжаться в течение нескольких миллиардов лет жизни звезды.

После длительных поисков было установлено, что звёзды большую часть своей жизни светят за счёт совершающихся в них преобразований четырёх ядер водорода (протонов) в одно ядро гелия. Масса четырёх протонов больше массы ядра гелия, этот избыток массы и превращается в энергию в термоядерных реакциях. Такая реакция идёт медленно и поддерживает свечение звезды на протяжении миллиардов лет.

Звёзды образуются из космических газопылевых облаков. При сжатии под действием тяготения сгустка газа его внутренняя часть постепенно разогревается. Когда температура в центре достигнет примерно миллиона градусов, начинаются ядерные реакции — образуется звезда.

Строение звёзд зависит от массы. Если звезда в несколько раз массивнее Солнца, то глубоко в её недрах происходит интенсивное перемешивание вещества (конвекция), подобно кипящей воде. Такую область называют конвективным ядром звезды. Чем больше звезда, тем большую её часть составит конвективное ядро. Остальная часть звезды сохраняет при этом равновесие. Источник энергии находится в конвективном ядре. По мере превращения водорода в гелий молекулярная масса вещества ядра возрастает, зато объём уменьшается.

© zagadki-cosmosa

Сделать бесплатный сайт с uCoz